Efficacy and safety of single-shot erector spinae plane block for perioperative analgesia in pediatric surgery: a systematic review and meta-analysis

Mahendratama P. Adhi, Rusmin B. Syukur, Lucky Andriyanto, Elizeus Hanindito, Arie Utariani

Author affiliations:
1. Mahendratama P. Adhi, Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; E-mail: mahendratama.adhi@ulm.ac.id; ORCID: {0000-0002-1308-3330}
2. Rusmin B. Syukur, Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; E-mail: rusminsuyukr@unhas.ac.id; ORCID: {0000-0001-8019-7228}
3. Lucky Andriyanto, Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; E-mail: lky.anest@gmail.com; ORCID: {0000-0003-3618-5433}
4. Elizeus Hanindito, Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; E-mail: elizeushanindito@gmail.com; ORCID: {0000-0003-0061-8372}
5. Arie Utariani, Department of Anesthesiology and Reanimation, Faculty of Medicine, Airlangga University, Surabaya, Indonesia; E-mail: ariutariani299@gmail.com; ORCID: {0000-0002-1438-2447}

Correspondence: Mahendratama P. Adhi; E-mail: mahendratama.adhi@ulm.ac.id; Phone: +62511-3262392; Mobile: +62 81242900096

ABSTRACT

Background and Objective: Since its introduction in 2016, ultrasound-guided ESPB has been utilized in various surgical contexts. Numerous case reports and studies have suggested that ESPB in pediatrics can offer perioperative analgesia, but its clinical effects have remained controversial. Therefore, this review aims to comprehensively analyze the efficacy and safety of single-shot ESPB in pediatrics.

Methodology: The literature search was electronically conducted in the Cochrane Library, PubMed, and Google Scholar databases, covering data available until December 2022. This meta-analysis encompassed English-language RCT that compared preoperative single-shot ESPB with a control group (no block or sham block) in pediatric patients (age < 18 y). The primary outcomes encompassed total intra and postoperative opioid consumption and the time first to rescue analgesia. Secondary outcomes comprised 24-hour postoperative pain scores, the incidence of PONV, and complications linked to local anesthesia and the ESPB procedure.

Results: The analysis incorporated six RCTs, encompassing 320 samples. Single-shot ESPB demonstrated a reduction in intraoperative opioid consumption (MD: -0.54; 95% CI [-0.97, -0.11], I² = 97%, P = 0.01, very low-quality certainty of evidence), 24-hour postoperative opioid consumption (MD: -0.12; 95% CI [-0.21, -0.02], I² = 93%, P = 0.02, low quality certainty of evidence), and an extension in the time to the first rescue analgesia requirement (MD: 3.38; 95% CI [2.38, 4.39], I² = 96%, P < 0.00001, very low-quality certainty of evidence). The ESPB group exhibited reduced postoperative pain scores at 0, 1, 4, and 6 h (P < 0.05); however, no significant differences were observed compared to the control group at 2, 12, and 24 h. The incidence of PONV was also significantly lower in the ESPB group (P = 0.04). Encouragingly, all six RCTs reported no instances of complications associated with local anesthesia and the ESPB procedure.

Conclusion: This meta-analysis showed that ultrasound-guided single-shot ESPB in pediatrics diminished both intraoperative and postoperative opioid needs and also led to a decrease in occurrences of PONV. Furthermore, it effectively alleviated postoperative pain while maintaining safety against the potential risks of local anesthetic toxicity and complications linked to the ESPB procedure.
1. INTRODUCTION

Postoperative pain is common among pediatric patients, affecting more than 85%. A comprehensive survey revealed that 40% of these young patients endure postoperative pain of moderate to severe intensity, and a staggering 75% of them do not receive adequate analgesia. This deficiency in pain management can lead to maladaptive behavioral changes, heightened reliance on analgesics, delayed postoperative recovery, and prolonged hospital stays. The implementation of a preventive analgesia approach for pediatric pain management holds the potential to offer optimal analgesic quality while also diminishing postoperative pain and analgesic consumption.

In the aspect of managing moderate to severe pain in pediatric cases, opioids are frequently employed. Despite providing effective pain relief, opioids have side effects, including pruritus, nausea, vomiting, urinary retention, constipation, ileus, respiratory depression, and opioid-induced hyperalgesia. A potential measure to address these concerns is the reduction of opioid usage during the perioperative period. This measure is consistent with the Enhanced Recovery After Surgery (ERAS) protocols in pediatrics, which advocate for a multimodal analgesia approach to decrease intraoperative and postoperative opioid demands, hasten recovery, and mitigate complications.

Incorporating regional anesthesia within the framework of multimodal analgesia during general anesthesia offers numerous advantages. Regional anesthesia can potentially diminish or perhaps eliminate the impacts of the surgical stress response, ensuring efficient postoperative pain alleviation. Furthermore, this approach can minimize the requirement for intravenous or volatile anesthetic agents during surgery, resulting in a faster emergence from anesthesia and earlier extubation. Over the past decade, the use of regional anesthesia, particularly block anesthesia, has notably increased. The evolution of block anesthesia techniques is closely intertwined with advancements in ultrasound imaging technology, offering enhanced safety, efficacy, efficiency, and ease of application. This progress has brought forth techniques such as the erector spine plane block (ESPB), which has gained popularity. Since its inception by Forero, the ESPB method has found applications in a range of surgeries, including those encompassing pediatric cases. The first publication on the application of ESPB in pediatrics was presented in 2017 when Munoz et al. reported that ESPB yielded optimal pain relief for up to 32 h after chest wall tumor resection. In a retrospective study encompassing 164 pediatric patients undergoing diverse surgical procedures, it was observed that over 70% of ESPB cases achieved effective intraoperative pain management.

Several randomized controlled trials (RCTs) have stated that preoperative single-shot ESPB in pediatrics can lead to reductions in both intra and postoperative opioid requirements, along with lowered postoperative pain scores. Another study indicated that although ESPB can decrease postoperative opioid consumption, there is no significant divergence in pain scores within 24 h following surgery compared to the control group.

Based on the above explanation, this study aimed to evaluate the effectiveness and safety of single-shot ESPB as a perioperative analgesic method in pediatrics. The primary outcomes encompass the perioperative pain-relieving effectiveness of single-shot ESPB, assessed through measurements of intra and postoperative opioid use, as well as the time taken until the first instance of supplementary analgesia. Secondary outcomes involve pain scores within 24 h post-surgery, postoperative nausea and vomiting (PONV) occurrences, and any adverse effects of local anesthesia and the ESPB procedure.

2. METHODOLOGY

This study aligned with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The process involved an electronic literature search across the Cochrane Library, PubMed, and Google Scholar databases, utilizing specific keywords ("Erector spinae plane block" OR "ESP block" OR "ESPB") AND ("pediatric" OR "children" OR "neonate" OR "infant" OR "adolescent"), covering the timeframe up to December 31, 2022.
Table 1: Characteristics of the included RCTs

<table>
<thead>
<tr>
<th>Author & Year</th>
<th>Type of surgery</th>
<th>Type of ESPB & local anesthetic</th>
<th>Comparator</th>
<th>Sample size (ESPB/control)</th>
<th>Intraoperative opioid</th>
<th>Postoperative analgesia</th>
<th>Postoperative rescue analgesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaushal, 2019</td>
<td>Cardiac surgeries through a midline sternotomy</td>
<td>Bilateral ESPB at T3 level, 1.5 mL/kg ropivacaine 0.2% on each side</td>
<td>No block</td>
<td>40/40</td>
<td>Inj. fentanyl IV</td>
<td>Acetaminophen 15 mg/kg/8 h IV</td>
<td>Fentanyl 0.5 -1 mg/kg IV when MOPS score ≥ 4</td>
</tr>
<tr>
<td>Mostafa, 2019</td>
<td>Splenectomy</td>
<td>Bilateral ESPB at T7 level, 0.3 mL/kg bupivacaine 0.25% on each side</td>
<td>Sham block</td>
<td>30/30</td>
<td>Inj. fentanyl IV</td>
<td>Diclofenac suppository 25 mg/8 h</td>
<td>Paracetamol 15 mg/kg IV when CHEOPS score > 6</td>
</tr>
<tr>
<td>Singh, 2020</td>
<td>Lower abdominal surgeries</td>
<td>Bilateral ESPB at L1 level, 0.5 mL/kg bupivacaine 0.25% on each side</td>
<td>No block</td>
<td>20/20</td>
<td>NA</td>
<td>Single dose acetaminophen 15 mg/kg IV</td>
<td>Morphine 0.05 mg/kg IV when CHEOPS score ≥ 4</td>
</tr>
<tr>
<td>Abduallah, 2022</td>
<td>Hip surgery</td>
<td>Unilateral ESPB at L1 level, 0.4 mL/kg bupivacaine 0.25%</td>
<td>Sham block</td>
<td>20/20</td>
<td>Inj. fentanyl IV</td>
<td>Acetaminophen 15 mg/kg/6 h IV</td>
<td>Morphine 0.05 mg/kg IV when CHEOPS score > 6</td>
</tr>
<tr>
<td>Karacaer, 2022</td>
<td>Cardiac surgeries through a midline sternotomy</td>
<td>Bilateral ESPB at T5 level, 0.5 mL/kg bupivacaine 0.25% on each side</td>
<td>No block</td>
<td>20/20</td>
<td>Inj. fentanyl IV</td>
<td>Acetaminophen 15 mg/kg/6 h IV</td>
<td>Morphine 0.05 mg/kg IV when MOPS score ≥ 4</td>
</tr>
<tr>
<td>Yuan, 2022</td>
<td>Thoracoscopic lung lesion resection</td>
<td>Unilateral ESPB at T4 level, 0.5 mL/kg levobupivacaine 0.25%</td>
<td>No block</td>
<td>30/30</td>
<td>Inj. remifentanil IV</td>
<td>Oral acetaminophen 15 mg/kg/6 h</td>
<td>Sufentanil 0.05-0.1 µg/kg IV when FLACC score > 4</td>
</tr>
</tbody>
</table>

Abbreviations: CHEOPS, Children's Hospital of Eastern Ontario Pain Scale; ESPB, erector spinae plane block; FLACC, Face, Legs, Activity, Cry and Consolability; L, lumbar; MOPS, Modified Objective Pain Scale; NA, not available; T, thoracic

2.1. Study selection

Two reviewers (MA and RS) screened articles based upon the title and the abstract evaluation. The analysis included studies that met the PICOS (Population, Intervention, Comparison, Outcome, Studies) criteria, including pediatric patients (≤ 18 y old) who went through surgery (P), received preoperative single-shot ESPB (I), were compared to a control group (without block or sham block) (C). The data encompassed primary results such as intraoperative opioid consumption, total opioid consumption within 24 h postoperatively, and time to first rescue analgesia. Secondary outcomes included postoperative pain scores at 0, 1, 2, 4, 6, 12, and 24 h, the incidence of PONV, as well as side effects or complications related to ESPB and local anesthetic use (O), while the exclusively consisted of randomized controlled trials (RCTs) with added qualitative search terms (S).

2.2. Data extraction

Two individuals (MA and LA) independently conducted the review, assessed each study, and performed data extraction, which encompassed details such as first author, publication year, sample size, type of surgery, ESPB procedure, local anesthesia used (type, concentration, volume), type of postoperative analgesia, intraoperative opioid consumption, total postoperative opioid consumption within 24 h, time to first rescue analgesia, pain assessment tool, pain scores within 24 h post-surgery, occurrences of PONV, and any adverse effects or complications related to the use of local anesthesia and the ESPB procedure. All opioids used in the studies were standardized to equianalgesic morphine doses (1 mg morphine IV = 10 µg fentanyl/remifentanil IV = 1 µg sufentanil IV). In cases where data were incomplete, written requests were emailed to the respective authors.

2.3. Quality assessment & certainty of the evidence

Two study analysts (EH and AU) evaluated the quality and assessed the bias risk using the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2.0). Any
Table 2: Certainty of evidence using the GRADE approach

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>No of participants (studies)</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Relative (95% CI)</th>
<th>Absolute (95% CI)</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperative opioid consumption (morphine equianalgesic in mg/kg)</td>
<td>280 (5 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>MD -0.54 (-0.97, -0.11)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative opioid consumption in 24 h (morphine equianalgesic in mg/kg)</td>
<td>180 (4 RCTs)</td>
<td>Not serious</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>MD -0.12 (-0.21, -0.02)</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Time to first rescue analgesia (h)</td>
<td>280 (5 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>MD 3.38 (2.38, 4.39)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 0 h</td>
<td>320 (6 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -0.71 (-1.03, -0.40)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 1 h</td>
<td>280 (5 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -1.05 (-2.03, -0.08)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 2 h</td>
<td>260 (5 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -0.7 (-1.52, 0.11)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 4 h</td>
<td>220 (4 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -1.17 (-2.18, -0.17)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 6 h</td>
<td>320 (6 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -0.88 (-1.55, -0.18)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 12 h</td>
<td>320 (6 RCTs)</td>
<td>Seriousa</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -0.35 (-1.00, 0.30)</td>
<td>Very low</td>
<td></td>
</tr>
<tr>
<td>Postoperative pain score at 24 h</td>
<td>240 (5 RCTs)</td>
<td>Not serious</td>
<td>Seriousb</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>SMD -0.38 (-0.98, 0.21)</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>PONV events</td>
<td>280 (5 RCTs)</td>
<td>Seriousa</td>
<td>Not serious</td>
<td>Not serious</td>
<td>Seriousc</td>
<td>93 fewer per 1,000 (148 fewer to 3 fewer)</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ESPB, erector spinae plane block; GRADE, the Grading of Recommendations Assessment, Development, and Evaluation; MD, mean difference; OR, odds ratio; SMD, standard mean difference.

aDowngrade the quality of evidence by one level because one study has a risk of bias and outcome assessment.

bDowngrade the quality of evidence because of heterogeneity F > 30%.

cDowngrade the quality of evidence by one level because the number of samples does not meet the optimal information size.

disagreements in quality assessment and bias risk were deliberated upon with a third party. The final evaluation was categorized into 1) low risk of bias, 2) some concerns/moderate risk of bias, and 3) high risk of bias, 4) adhering to the descriptions in the Cochrane guidelines. The certainty of the evidence was summarized through the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology for individual outcomes. The GRADEpro GDT software (GRADepro Guideline Development Tool, McMaster University, 2020) was employed to facilitate the creation of evidence summaries and recommendations.

2.4. Data synthesis & statistical analysis

Continuous outcomes were documented as mean values and standard deviations (SD). Results presented as median and interquartile range were converted into mean and SD using the formula outlined by Luo et al. and Wan et al. For data analysis, the Revman 5.4.1 software (The Nordic Cochrane Centre, Denmark) was utilized. In
a situation where continuous data exhibited varying measurement outcomes, standardized mean differences (SMD) with 95% confidence intervals (CIs) were employed. Meanwhile, outcomes with consistent measurements were displayed as mean differences (MD) with 95% CIs. Dichotomous data were analyzed utilizing the Mantel-Haenszel odds ratio, and heterogeneity was assessed using the \(I^2 \) statistic. Forest plots reflecting low heterogeneity (\(I^2 \leq 30% \)) were presented under fixed effects, while instances of high heterogeneity (\(I^2 > 30% \)) were depicted under random effects. When the process was feasible, sub-group analyses were conducted for data showing high heterogeneity.

3. RESULTS

3.1. Study selection and characteristics

A summary of the literature screening process and results following PRISMA guidelines is shown in Figure 1. Six studies\(^{10-13,19,20}\) compared the effectiveness of single-shot ESPB analgesia to the control group in pediatric surgeries, encompassing 320 included samples. Table 1 shows the main characteristics of these six studies.

3.2. Quality assessment & certainty of the evidence

The assessment of bias risk using RoB 2.0 indicated that one study had a high risk of bias, while another five\(^{10,12,13,19,20}\) were found to have a low risk of bias, as shown in Figure 2. Evaluating evidence quality using the GRADE guidelines produced very low to low-quality ratings, as seen in Table 2.

3.3. Primary outcome

3.3.1. Intraoperative opioid consumption

Five studies\(^{10-13,19}\) with a combined sample size of 280, reported total intraoperative opioid consumption. The ESPB group exhibited lower intraoperative opioid consumption compared to the control group (MD: -0.54; 95% CI [-0.97, -0.11], \(I^2 = 97% \), \(P = 0.01 \), very low-quality certainty of evidence) (Figure 3a).

3.3.2. Total postoperative opioid consumption in 24 h

Four studies\(^{10,12,13,20}\) reported total postoperative opioid consumption within 24 h. The postoperative opioid requirement was lower in the ESPB group (MD: -0.12; 95% CI [-0.21, -0.02], \(I^2 = 93% \), \(P = 0.02 \), low-quality certainty of evidence) (Figure 3b).

3.3.3. Time to first rescue analgesia

In the case of the five studies\(^{10-12,19,20}\) with a total sample size of 280, the group receiving single-shot ESPB demonstrated an extended duration to the first rescue analgesia requirement (MD: 3.38; 95% CI [2.38, 4.39], \(I^2 = 96% \), \(P < 0.00001 \), very low-quality certainty of evidence) (Figure 3c).

3.4. Secondary outcome

3.4.1. Postoperative pain score within 24 h

Five studies\(^{10,12,13,19,20}\) assessed pain scores up to 24 h postoperatively, while one study\(^{11}\) evaluated pain up to only 12 h post-surgery. Pain assessment at 0, 6, and 12 h was conducted across all of the six studies. Pain scores at 1, 2, and 24 h were each evaluated by five different studies. Additionally, four studies\(^{10,11,13,19}\) assessed pain at 4 h postoperatively.
Significantly lower postoperative pain scores in the ESPB group were observed at 0 h (SMD: -0.71, 95% CI [-1.03, -0.40], I² = 39%, P < 0.00001, very low-quality certainty of evidence), 1 hour (SMD: -1.05; 95% CI [-2.03, -0.08], I² = 93%, P = 0.03, very low-quality certainty of evidence), 4 h (SMD: -1.17; 95% CI [-2.18, -0.17], I² = 91%, P = 0.02, very low-quality certainty of evidence), and 6 h (SMD: -0.88; 95% CI [-1.59, -0.18], I² = 88%, P = 0.01, very low-quality certainty of evidence). No significant differences in pain scores were observed at 2 h (SMD: -0.70; 95% CI [-1.52, 0.11], I² = 90%, P = 0.09, very low-quality certainty of evidence), 12 h (SMD: -0.35; 95% CI [-1.00, 0.30], I² = 87%, P = 0.30, low-quality certainty of evidence), and 24 h (SMD: -0.38; 95% CI [-0.98, 0.21], I² = 77%, P = 0.21, low-quality certainty of evidence). A summary of the results for postoperative pain scores within 24 h could be seen in Figure 4.

3.4.2. PONV events

PONV events were documented in five studies,10-13,19 and the analysis of collected data showed that the odds ratio (OR) for PONV was significantly lower in the ESPB group (OR: 0.52; 95% CI [0.28, 0.98], I² = 5%, P = 0.04, low-quality certainty of evidence) as shown in Figure 5.

3.4.3. Complications related to local anesthesia & ESPB procedure

All studies in the current analysis reported no complications associated with using local anesthesia or the ESPB procedure guided by ultrasound.

4. DISCUSSION

This meta-analysis revealed that preoperative single-shot ESPB in pediatrics reduced both intra and postoperative opioid requirements, prolonged the time first to rescue analgesia, and alleviated pain for up to 6 h post-surgery, with very low to low certainty of evidence quality. The ESPB, a recently introduced fascial plane block, entailed the administration of local anesthesia within the fascial plane between the erector spinae muscle and the transverse processes of the vertebrae.21,22 The precise mechanism underlying the analgesic effect of ESPB remained uncertain. Adult cadaver studies examining dye dispersion yielded varying results. For example, Ivanusic et al.23 observed dye dispersion into the posterior dorsal ramus of the costotransverse ligament; while Adhikary et al.24 and Yang et al.25 noted dye spread to the anterior side of the transverse process, encompassing the paravertebral space, neural foramina, ipsilateral epidural space, and ipsilateral sympathetic branches. Studies conducted in the pediatric age range had predominantly focused on neonates. Those on two neonatal cadavers demonstrated dye spread into the anterior paravertebral and epidural spaces, intercostal spaces, and dorsal and ventral spinal nerve roots.26 Neonates and infants possessed more flexible spines, less dense ligaments, and cartilaginous laminae, potentially enabling a broader distribution of local anesthetic volume.

The present meta-analysis aligned with studies conducted in adult populations, illustrating the effects of single-shot ESPB in reducing perioperative opioid consumption.22 Opioids have historically played a crucial role in perioperative pain management in pediatrics. However, its usage often led to various side effects, including nausea and vomiting, pruritus, constipation, sedation, and potentially fatal respiratory depression in pediatric patients. Adopting multimodal analgesia, including regional and non-opioid, was preferred for opioid-sparing or opioid-free anesthesia concepts. The region offered optimal perioperative analgesia and mitigated stress responses in infants and children. When not contraindicated, regional anesthesia should ideally be employed for postoperative pain management in all pediatric surgical cases to reduce opioid requirements.2 The results of the current meta-analysis suggested that single-shot ESPB served as an opioid-sparing analgesic option for surgeries with severe pain intensity. Furthermore, Thomas and Tulgar27

Figure 5. = 0.04, low-quality certainty of evidence). A summary of the results of the current meta-analysis suggested that single-shot ESPB served as an opioid-sparing analgesic option for surgeries with severe pain intensity. Furthermore, Thomas and Tulgar27
reported that bilateral ESPB combined with opioid-free anesthesia provided effective pain control after laparoscopic cholecystectomy. Based on another case study, ESPB minimized exposure to general anesthesia in premature infants undergoing inguinal hernia surgery, implying ESPB could be utilized as a sole anesthetic for specific surgeries. Another advantage of opioid-sparing analgesia was the reduced incidence of PONV. In this analysis, PONV was lower in the ESPB group.

The discovery of reduced pain scores in the ESPB group up to six hours post-surgery in the present meta-analysis aligned with a prior study on adult populations undergoing diverse surgical procedures. However, several meta-analyses on adults undergoing spinal surgery demonstrated that the pain-reducing effects of ESPB extended to the 24 to 48 h post-surgery. Multiple factors, such as the type and duration of surgery and the type and dose of local anesthetic used, can affect the results of postoperative pain assessment. In contrast to other studies within this meta-analysis, Yuan et al., did not identify a significant disparity in pain scores up to 24 h post-surgery between the ESPB group and the control group. Variations in the surgery duration and the total dose of administered local anesthesia in these two studies potentially influenced the outcomes of postoperative pain scores. The characteristics of nerve blocks hinged on the distribution of local anesthesia in proximity to the targeted nerves. In fascial plane blocks, achieving optimal dermatomal coverage necessitated a larger volume of local anesthesia. Moreover, local anesthetics with heightened protein
Postoperative pain score at 0 h

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Control</th>
<th>ESPB</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference</th>
<th>Nv</th>
<th>Randomized</th>
<th>95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasual et al 2019</td>
<td>4.99</td>
<td>0.53</td>
<td>3.50</td>
<td>1.49</td>
<td>40</td>
<td>4.50</td>
<td>0.57</td>
<td>40</td>
<td>24.4%</td>
<td>-1.41</td>
<td>1.11</td>
<td>1.92</td>
<td>0.70</td>
<td>2019</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.05; Chi² = 6.56, df = 4 (P = 0.16); P = 39%
Test for overall effect: Z = 2.43, P < 0.00001

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Control</th>
<th>ESPB</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Std. Mean Difference</th>
<th>Nv</th>
<th>Randomized</th>
<th>95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostafa et al 2019</td>
<td>3.54</td>
<td>0.62</td>
<td>3.00</td>
<td>1.59</td>
<td>40</td>
<td>4.50</td>
<td>0.57</td>
<td>40</td>
<td>24.4%</td>
<td>-1.41</td>
<td>1.11</td>
<td>1.92</td>
<td>0.70</td>
<td>2019</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.05; Chi² = 6.56, df = 4 (P = 0.16); P = 39%
Test for overall effect: Z = 2.43, P < 0.00001

Figure 4: Forest plot of postop pain scores at 0, 1, 4, 6, and 24 h for single-shot ESPB group vs. control group.

www.apicareonline.com

Open access attribution (CC BY-NC 4.0)
escalating the potential for extending the block duration through increased dosages. A study focusing on pediatric transversus abdominal plane (TAP) blocks, employing two distinct doses of local anesthesia, showed that a higher dose contributed to prolonged analgesia duration and diminished requirements for supplementary analgesia within 24 h.14

The proficiency of the anesthesiologist in conducting ESPB procedures could also give rise to varying analgesic effects.35 This became apparent through several studies, involving adult cadaver ESPB, which exhibited diverse patterns of dye dispersion. Furthermore, discrepancies in interventions encompassing postoperative supplementary analgesia could impact postoperative pain scores. Another pivotal factor pertained to the variance in pain assessment tools, which had no universal application across all age groups to date, so the available tools must be adapted to each age group.9 Moreover, sociocultural elements could influence pain perception, as evidenced in a study on pain assessment. A study utilized the FLACC scale and produced superior outcomes compared to the CHEOPS, OPS, and TPPS (Toddler Preschool Postoperative Pain Scale) scales for Pakistani children aged 3-7 years.36

The six studies included in this meta-analysis did not report any complications related to local anesthesia. The ESPB represented a volume-based fascial plane block, which entailed a potential systemic local anesthesia toxicity risk. The maximum dose limit for each block varied due to the tissue vascularization within the blocked area, influencing the systemic absorption of local anesthesia. In the case of ESPB, employing 150 mg of ropivacaine led to a plasma concentration of 1.4 ± 0.3 µg/mL after thirty minutes.37 This plasma concentration remained well below the threshold value for ropivacaine plasma toxicity, which stood at 4.3 µg/mL. De Cassai et al.,38 affirmed that the plasma concentration of lidocaine at 3.5 mg/kg of ideal body weight in ESPB did not reach the threshold for lidocaine toxicity (5 µg/mL). However, no available publication existed containing plasma concentration data for bupivacaine and levobupivacaine after ESPB injection.

Ultrasound guidance is very convenient, so a single-shot ESPB only takes 10 min,9 and 18 min when accompanied by catheter placement.39 The injection site for ESPB maintained a considerable distance from the spinal cord, causing a shallow risk of spinal cord damage. Ultrasound guidance assisted in visualizing the injection site, needle trajectory, and local anesthetic deposition, which helped prevent and mitigate complications. It should be noted that none of the six studies encompassed within this meta-analysis documented any complications associated with ESPB. These results indicated that implementing ultrasound-guided ESPB in pediatrics was a safe approach.

5. LIMITATIONS
The number of studies and the sample sizes involved were small. Secondly, there existed a notable degree of heterogeneity within the overall analysis; however, conducting subgroup analyses could have been more feasible due to the limited number of studies available. Factors contributing to this high heterogeneity encompassed the diversity in surgical procedures, variations in the employment of local anesthesia, differences in pain assessment tools, and discrepancies in interventions. The study furnished evidence of very low to low quality. Contributing factors to the low-quality evidence included a high risk of bias within the encompassed studies, inconsistencies in outcomes stemming from considerable heterogeneity, and limited sample size information.

6. CONCLUSION
In conclusion, preoperative single-shot erector spinae plane block proved effective for providing perioperative analgesia in pediatric patients. Implementing ultrasound-guided erector spinae plane block ensured protection against systemic local anesthesia toxicity and associated complications, making it a promising approach for opioid-sparing analgesia. Consequently, there is a need for additional studies encompassing larger sample sizes and randomized controlled trials to facilitate a more comprehensive investigation.

7. Data availability
The numerical data generated during this research is available with the authors.

8. Acknowledgement
We gratefully thank Faculty of Medicine

9. Conflict of interest
The study utilized the hospital resources only, and no external or industry funding was involved.

10. Authors’ contribution
MA, AU: Concept, conduction of the study work and manuscript editing
RS, LA: Conduction of the study work
EH: Conduction of the study work and manuscript editing

11. REFERENCES
erector spinae plane block in pediatric surgery

Adhi MP, et al

