CASE REPORT

CARDIOTHORACIC ANESTHESIA

Anesthetic challenges during repairing left pulmonary artery sling without cardiopulmonary bypass: a case report

Anshoril Arifin, MD¹, Aries Perdana, MD¹

Author affiliations:
¹. Anshoril Arifin, Department of Anesthesiology and Intensive Care, Universitas Indonesia - National Cipto Mangunkusumo Hospital, 10430 Jakarta, Indonesia; E-mail: anshoril1991@gmail.com; ORCID: {0009-0008-8408-7620}
2. Aries Perdana, Department of Anesthesiology and Intensive Care, Universitas Indonesia - National Cipto Mangunkusumo Hospital, 10430 Jakarta, Indonesia; E-mail: ariesp.anes75@gmail.com; ORCID: {0000-0003-0905-0998}

Correspondence: Anshoril Arifin, E-mail: anshoril1991@gmail.com; Phone: +6285337548100

ABSTRACT

Left pulmonary artery sling (LPAS) is a rare vascular anomaly. The general surgical technique to correct it is through median sternotomy under cardiopulmonary bypass (CPB). In this case, we discuss the anesthetic management of left pulmonary artery (LPA) reimplantation without CPB to improve the understanding and provide an overview for practitioners in managing patients with this rare vascular anomaly. Patient was a 10 months old baby, with main complaints of shortness of breath since he was 4 months old, and diagnosed with LPAS from cardiac multi-slice CT scan (MSCT) examination. Intraoperatively, when the LPA was clamped, the blood pressure decreased due to decreased preload, and the end-tidal CO₂ increased to 70 mmHg due to increased dead space, which was successfully managed. Postoperatively, the patient suffered from ventilator acquired pneumonia (VAP). Evaluating and assessing the potential complications that can occur during the perioperative period will help prepare for management and improve the success of anesthetic management.

Abbreviations: CPB- Cardiopulmonary Bypass; ETT- Endotracheal Tube; LPA- Left Pulmonary Artery; LPAS- Left Pulmonary Artery Sling; MSCT- Multi-Slice CT Scan; RPA- Right Pulmonary Artery; VAP- Ventilator Acquired Pneumonia

Key words: Left Pulmonary Artery; Anesthesia Management; Pulmonary Sling; Cardiopulmonary Bypass

Received: August 10, 2023; Reviewed: October 16, 2023; Accepted: October 30, 2023

1. INTRODUCTION

Left pulmonary artery sling (LPAS) is a vascular anomaly with the left pulmonary artery (LPA) arising from the right pulmonary artery (RPA) and running posteriorly over the surface of the bronchi between esophagus and trachea to the left lung. This situation suppresses the distal trachea, right main bronchus, and small part of left main bronchus.¹ As a result, the patient will show symptoms of coughing, wheezing, stridor, severe respiratory distress to death. The severity of the symptoms depends on the degree of tracheal obstruction.²,³

The common surgical technique for correction of LPAS is median sternotomy approach using cardiopulmonary bypass (CPB). The surgery consists of the releasing of LPA from the trachea, and reimplanting it to the main pulmonary artery (MPA), followed by repair of the narrowed trachea with tracheoplasty.¹ This case report presents the anesthetic management of a 10 months old patient with LPAS who underwent LPA reimplantation without using CPB.

2. CASE REPORT

We present a case report of a 10 months old baby with main complaint of shortness of breath accompanied...
by wheezing, since he was 4 months old. On physical examination, the respiratory rate was 40 breaths/min with symmetrical vesicular lung sounds accompanied by wheezing during inspiration and expiration, with no stridor. Chest X-ray showed bronchopneumonia. Based on the results of cardiac multi-slice CT scan (MSCT), the patient was diagnosed with LPAS. The patient was planned for LPA sling repair surgery without using CPB (Figure 1).

The patient underwent general anesthesia. During the operation, the patient's hemodynamic parameters remained stable. The surgery was performed without CPB by releasing and reimplanting LPA into the MPA. When the LPA was clamped to be cut and release the sling, the blood pressure decreased and the end-tidal CO$_2$ increased to 70 mmHg. We injected inotropic drugs along with colloid fluid loading of 10 ml/kg and increased the tidal volume, respiratory rate and FiO$_2$. After the completion of the reimplantation process, the LPA and RPA showed confluence, and the end-tidal returned to normal. The surgeons decided not to perform tracheoplasty at that stage. The patient was shifted from the operating room to intensive care unit (ICU) to be mechanically ventilated.

In the ICU, on the second day of treatment, the patient developed respiratory distress and was diagnosed to be suffering from ventilator acquired pneumonia (VAP). The sputum culture results showed Klebsiella pneumoniae infection. Appropriate antibiotics were started. On the seventh day of treatment, the patient was extubated and continued to use non-invasive ventilation (NIV). After the extubation, intravenous dexamethasone was given to reduce tracheal edema. On the tenth day of treatment, the patient’s clinical condition improved, she was fully conscious and hemodynamically stable without inotropic support. The patient was then transferred to the intermediate ward.

3. DISCUSSION

LPAS is one of the rare congenital heart defects caused by abnormalities in the LPA. This condition obstructs the trachea and main bronchi due to compression of the LPA (Figure 2)3, and can be accompanied by tracheal stenosis and other congenital heart defects. In our patient, no other congenital heart defects were found. Diagnosis of LPAS can be established by MSCT scan.2 In this patient, the cardiac MSCT examination showed that the LPA grew from RPA and ran posteriorly between trachea and esophagus towards the left lung. The MSCT examination showed narrowing of the trachea, which was the main focus for the anesthesiologist, as there was a risk of airway narrowing leading to difficult intubation process.

Preoperative bronchoscopy examination can estimate the degree of tracheal stenosis, the length and width of stenosis, and the distance from the carina.4 In this patient, preoperative bronchoscopy was not performed because the patient's clinical status did not show signs of severe respiratory distress or inspiratory stridor. However, the possibility of tracheal stenosis cannot be completely
Anesthetic challenges during repairing left pulmonary artery sling

Arifin A, et al

Arifin A, et al

Anesthetic challenges during repairing left pulmonary

DOI: 10.4103/jcis.jcis_9_18

